Jeu de données par_origines

Sur l’idée du plotly des origines, on explore les 10 origines les plus courantes sur chacun des departements, et on avise du meilleur regroupement en catégories aggrégées : Est-ce “dep_limitrophes”, “dep_2éme_couronne”, “dep_lointains”, “pays_limitrophes”, “pays_lointains” ou bien tout autre chose…

top_20_orig_lst <- map(levels(par_origines_td$dep_dest), ~par_origines_td %>% filter(dep_dest==.x) %>% group_by(dep_org) %>% summarise(top_20_orig = sum(volume)) %>% arrange(desc(top_20_orig) ) %>% top_n(20)) %>% setNames(levels(par_origines_td$dep_dest))
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
## Selecting by top_20_orig
top_20_orig_df <-enframe(top_20_orig_lst, name = "dep_dest", value = "top_dep_orig") 
print(top_20_orig_lst)
## $`09`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres        269860
##  2 GB            259258
##  3 NL            241410
##  4 ES+PT         240661
##  5 33            197595
##  6 34            182702
##  7 DE            160880
##  8 BE+LU         150641
##  9 13            142945
## 10 75            129149
## 11 44             98348
## 12 31             90038
## 13 82             84799
## 14 94             72730
## 15 92             70392
## 16 64             66844
## 17 85             63852
## 18 77             62258
## 19 30             62245
## 20 DK+SE+NO       60832
## 
## $`11`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 GB           2435889
##  2 DE           1286481
##  3 Autres       1144845
##  4 ES+PT        1007522
##  5 BE+LU         682324
##  6 NL            474797
##  7 DK+SE+NO      406873
##  8 13            354412
##  9 69            311074
## 10 33            292669
## 11 75            288575
## 12 59            255806
## 13 38            234422
## 14 93            207178
## 15 78            197812
## 16 94            195432
## 17 92            195266
## 18 77            193371
## 19 91            191862
## 20 IT            191380
## 
## $`12`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 31            508557
##  2 NL            462217
##  3 Autres        396124
##  4 DE            347250
##  5 75            303159
##  6 GB            274035
##  7 BE+LU         261652
##  8 13            249503
##  9 DK+SE+NO      244055
## 10 ES+PT         199069
## 11 92            195442
## 12 93            164823
## 13 94            161258
## 14 78            151873
## 15 91            148436
## 16 33            145858
## 17 69            141396
## 18 77            131644
## 19 95            125219
## 20 63            120246
## 
## $`30`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres       2138859
##  2 DE           1693882
##  3 BE+LU        1483686
##  4 NL           1073617
##  5 ES+PT         783003
##  6 69            743154
##  7 GB            701503
##  8 75            608418
##  9 DK+SE+NO      603428
## 10 CH            591878
## 11 38            503368
## 12 59            424324
## 13 IT            345527
## 14 92            341708
## 15 42            296212
## 16 94            288640
## 17 31            286204
## 18 78            285032
## 19 93            277797
## 20 33            257089
## 
## $`31`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres       7403741
##  2 DE           1788857
##  3 ES+PT        1498500
##  4 GB           1062427
##  5 BE+LU         904397
##  6 33            763517
##  7 DK+SE+NO      756032
##  8 75            658647
##  9 NL            653372
## 10 34            599542
## 11 IT            548492
## 12 13            472689
## 13 64            447116
## 14 92            441441
## 15 66            351775
## 16 94            332526
## 17 93            325599
## 18 69            319114
## 19 44            316170
## 20 US            312803
## 
## $`32`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres        719620
##  2 GB            494758
##  3 NL            406091
##  4 DE            258318
##  5 BE+LU         238078
##  6 33            184799
##  7 ES+PT         167166
##  8 75            157564
##  9 DK+SE+NO      131431
## 10 13            107755
## 11 34            104272
## 12 59             97899
## 13 92             90314
## 14 93             80963
## 15 78             78450
## 16 44             77312
## 17 91             72009
## 18 IT             70793
## 19 94             69105
## 20 77             67131
## 
## $`34`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres       4376348
##  2 DE           3618779
##  3 BE+LU        2321784
##  4 GB           2045869
##  5 NL           1876396
##  6 ES+PT        1678526
##  7 69           1563114
##  8 31           1314915
##  9 13           1294476
## 10 DK+SE+NO     1284505
## 11 38           1272357
## 12 75           1053466
## 13 59            954150
## 14 IT            787914
## 15 CH            774790
## 16 93            756498
## 17 42            733886
## 18 63            725714
## 19 77            689663
## 20 92            681118
## 
## $`46`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 GB            602442
##  2 NL            492948
##  3 BE+LU         468649
##  4 31            455396
##  5 Autres        378165
##  6 DE            274911
##  7 75            268819
##  8 ES+PT         207470
##  9 33            197640
## 10 59            181301
## 11 92            181121
## 12 78            179740
## 13 91            171108
## 14 94            157915
## 15 93            147186
## 16 77            136946
## 17 DK+SE+NO      121570
## 18 44            119613
## 19 34            117973
## 20 95            117138
## 
## $`48`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 13            237805
##  2 DE            191806
##  3 NL            172943
##  4 Autres        135852
##  5 69            121508
##  6 75            120704
##  7 63            106480
##  8 BE+LU         102906
##  9 92             95761
## 10 94             82982
## 11 ES+PT          79722
## 12 31             79700
## 13 91             72632
## 14 93             69862
## 15 78             63167
## 16 DK+SE+NO       62672
## 17 84             62096
## 18 77             61000
## 19 33             55448
## 20 44             54606
## 
## $`65`
## # A tibble: 20 x 2
##    dep_org top_20_orig
##    <fct>         <dbl>
##  1 33           929803
##  2 ES+PT        911256
##  3 IT           762090
##  4 GB           740108
##  5 Autres       445319
##  6 44           360420
##  7 DE           308810
##  8 85           289398
##  9 17           270768
## 10 NL           261919
## 11 47           221939
## 12 40           220951
## 13 BE+LU        203332
## 14 75           189469
## 15 49           176461
## 16 16           169109
## 17 13           161953
## 18 34           155715
## 19 79           150308
## 20 35           140133
## 
## $`66`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 ES+PT        3012094
##  2 Autres       2907786
##  3 DE           1581486
##  4 31           1450651
##  5 GB           1066328
##  6 BE+LU        1018745
##  7 34            958459
##  8 NL            913267
##  9 59            830907
## 10 DK+SE+NO      626705
## 11 13            591435
## 12 77            509831
## 13 33            501029
## 14 75            498952
## 15 69            483253
## 16 91            472190
## 17 62            454069
## 18 93            442018
## 19 92            420066
## 20 78            400531
## 
## $`81`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres        645479
##  2 GB            388607
##  3 DE            314063
##  4 ES+PT         246147
##  5 BE+LU         232893
##  6 NL            220515
##  7 DK+SE+NO      207166
##  8 13            191336
##  9 75            174240
## 10 33            161905
## 11 92            121856
## 12 IT            111202
## 13 64            103915
## 14 69            101451
## 15 93            100572
## 16 78             99137
## 17 94             98783
## 18 91             92166
## 19 95             82570
## 20 66             82169
## 
## $`82`
## # A tibble: 20 x 2
##    dep_org  top_20_orig
##    <fct>          <dbl>
##  1 Autres       1266697
##  2 GB            402911
##  3 NL            331902
##  4 DE            295953
##  5 BE+LU         270266
##  6 ES+PT         263669
##  7 DK+SE+NO      206483
##  8 33            135641
##  9 75            124517
## 10 34            100435
## 11 IT             96028
## 12 92             95108
## 13 13             81501
## 14 59             75982
## 15 77             71696
## 16 93             67393
## 17 78             65774
## 18 66             63496
## 19 44             61850
## 20 64             61810